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Summary 
 

 
This paper discusses the role that volatility, skewness, and kurtosis play 

in the distribution of wealth for a series of returns with reinvestment. 

We begin with a simplistic model to explain how volatility shapes the 

wealth distribution of investments. We then look at how changing 

leverage varies an investor’s returns, solving for an amount of leverage 

that maximizes this wealth. Lastly, we introduce a new method to 

determine optimal leverage to maximize wealth when investment 

returns are not normally distributed, as is the case in most financial 

markets. 
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Introduction 

This paper discusses the role that volatility, skewness, and kurtosis play in the 

distribution of wealth for a series of returns with reinvestment. The magnitude of each 

measure shapes the amount of leverage an investor can apply to that investment. Part 

I of this paper is intended to explain how volatility and leverage shape the results of an 

investment strategy. We apply theory to practice and set the table for Part II of this 

paper where we explore special cases of investment returns where the 3rd and 4th 

moments are non-normal in nature. 

Taking a page from derivatives pricing 

Derivatives pricing often uses a binomial tree to simplify the price change of an asset. 

The asset price starts at today’s level, say $100 per share, and can move in two states 

only: up or down by a return increment with a probability p. The value of the asset at 

each time T is the probability weighted average of future outcomes, discounted by an 

interest rate. 

Here we will employ a tree with simple parameters, where the rise and fall are of equal 

percentages (+/-10%) and the probability of both rise and fall is 50%. With each step in 

time, the tree expands possible paths. The asset price on T=0 is $100. 

After one time step, there is a 50% chance of a 10% rise to $110 and a 50% chance of a 

10% decline to $90. The probability weighted average price is $100, the starting price. 

 

T=0 T=1 T=2

Price = $121

Return = +21%

+10%   Probability = 25%

Price = $110

Return = +10%

+10%  Probability = 50%

Price = $100 -10%    Price = $99

Return = 0% Return = -1%

Probability = 100% +10%    Probability = 50%

-10%  Price = $90

Return = -10%

Probability = 50%

-10%  Price = $81

Return = -19%

Probability = 25%

___________________________________ 

Binomial tree where each step is 

+/-10% return with 

probability=50%. 
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Adding another step in time at T=2, we see that the +21% return of the 2 win path is 

slightly larger than the 2 loss path return of -19% is negative. The 1 win/1 loss path, 

occurring with probability=50%, leads to a small -1% negative return1. 

Now, let’s increase the volatility of the asset by increasing the return size on each step 

to +/-30%. 

The same pattern holds but magnifies with the increase in volatility. The asymmetry of 

the 2 win versus 2 loss scenarios widens (+69% versus -51%). The loss associated with 

the 1 win/1 loss scenario also becomes more negative (-9% in the higher volatility 

world versus -1% in the previous lower volatility world). 

 

 

Going out further to T=4 in our higher volatility tree, we see the pattern even more 

pronounced. The most positive path (4 wins) yields a return of +186% while the most 

adverse 4 loss path yields a return of -76%. The 2 win/2 loss path yields a price of only 

$83, for a return of -17%. Despite having an equal number and equal size of wins and 

losses, this decline in investment value is often referred to as “volatility drag”. 

As we increase the number of steps and shrink the length of time between steps, our 

tree begins to converge to geometric Brownian motion. Geometric Brownian motion is 

T=0 T=1 T=2 T=3 T=4

Price = $286

Return = +186%

+30%   Probability = 6.25%

Price = $220

Return = +120%

+30%  Probability = 12.5%

Price = $169 -30%    Price = $154

Return = +69% Return = 54%

+30%   Probability = 25% +30%    Probability = 25%

Price = $130 -30%  Price = $118

Return = +30% Return = +18%

+30%  Probability = 50% +30%    Probability = 37.5%

Price = $100 -30%    Price = $91 -30%  Price = $83

Return = 0% Return = -9% Return = -17%

Probability = 100% +30%    Probability = 50% +30%    Probability = 37.5%

-30%  Price = $70 -30%  Price = $64

Return = -30% Return = -36%

Probability = 50% +30%  Probability = 37.5%

-30%  Price = $49 -30%  Price = $46

Return = -51% Return = -54%

Probability = 25% +30%  Probability = 25%

-30%  Price = $34

Return = -66%

Probability = 12.5%

-30%  Price = $24

Return = -76%

Probability = 6.25%

___________________________________ 

1 A 1 win/1 loss path will always 

lead to a price lower than the 

starting price as (1-x)(1+x)=1-x2. 

___________________________________ 

Binomial tree where each step 

is +/-30% return with 

probability=50%. 
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used to model the price diffusion of many financial markets and leads to a lognormal 

distribution of asset prices. 

Below is a graph of probability distributions of a standard lognormal for an asset with 

zero mean after 1 year when varying the annualized volatility at 20%, 40%, and 80%, 

respectfully. 

 

As we increase the volatility of our asset, we create paths with far-right tails but move 

more of the outcomes to the left-side of $100. This phenomenon shows the volatility 

drag concept in continuous return space and how it becomes more pronounced at 

higher volatility. As volatility increases, the distribution shifts to where more of paths 

are losers and a small outlier of very large winners emerge. All this occurs despite an 

expected value of $100 across all three distributions. 

What does this “mean” 

The goal of investing is to find positive expected returns and take risk. But as we saw 

previously, high volatility can create a profile where most outcomes are negative, while 

only a few lucky paths receive stellar returns. 

Even with a positive expected return process, we can adversely affect our wealth by 

taking too much risk relative to our expected returns. If the volatility underlying our 

investment process is too large relative to expected returns, we risk pushing the bulk 

of our ending wealth possibilities to the left side of the distribution. When we do this, 

there will be a small chance of stellar outliers, but investors will need a lot of luck to 

participate in these lucky paths. 

___________________________________ 

Lognormal return distribution 

for an asset with initial price of 

$100, zero mean, and volatility of 

20%, 40%, and 80%. 
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Consider a game where we flip a coin that has a 75% chance of landing heads and 25% 

chance of landing on tails. If the coin lands on heads we double our bet. That is, we 

receive our bet back plus the amount of the bet as winnings. If the coin lands on tails, 

we lose our bet. We can play the game as many times as we like. 

This game is clearly in our favor to play as: 

P(Win)*Return + P(Loss)*Return = (75%*100%) +(25%*-100%) = +50% 

Despite the positive expected value, it would be unreasonable to bet all our 

accumulated wealth on each coin flip. If we did, except in incredibly remote cases of 

extremely good luck, eventually tails will appear and all our wealth would be lost with 

no possibility of continuing to play the game. But if we seek to maximize our expected 

dollar value on each coin toss, then we should bet everything each time we play. So 

what gives? The solution is that we need to maximize the return while also defending 

our capital base for future games. 

If we know the return and volatility characteristics of a game or investment with 

certainty in advance, there is a solution to determine how much risk investors should 

take. The concept dates to the 1950s when J. L. Kelly Jr. published “A New 

Interpretation of the Information Rate”. The paper utilized Kelly’s background in 

Information Theory and focused on its application to risky bets. Gamblers and 

investors picked up on the work’s unique usefulness in games that repeat. Kelly’s 

paper highlighted that to maximize the long run growth rate, we should maximize not 

the expected value of wealth, but rather the expected value of the logarithm of wealth. 

For the special case where the winning payoff equals the losing payoff (as in our coin 

toss game), the optimal Kelly bet is 2p-1, where p is the probability of winning the bet. 

We should bet 2*75% - 1 = 50% of our accumulated wealth on each successive flip of 

the coin. 

To see this in practice, assume we play this game 100 times consecutively with the 

actual flips following the expected results of 75 heads and 25 tails. We start with $1 of 

wealth and bet varying percentages of that wealth on each flip of the coin. The graph 

below shows how increasing our risk as we bet leads to larger ending wealth. But once 

we bet more than 50% on each coin flip, the increased risk taken has a negative effect 

and leads to lower wealth as the drag from larger losses is more difficult to overcome. 

https://ieeexplore.ieee.org/document/6771227
https://ieeexplore.ieee.org/document/6771227
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Translating coin flips to continuous returns 

Unfortunately, we have not found participants willing to offer a coin flip game with 

such positive expected value. However, there are financial assets and strategies with 

positive expected returns that we can play many times in succession. We can scale 

the size of these bets using leverage to achieve maximum long run wealth in a Kelly 

type context. 

Suppose we own a stock with a 10% expected return and 20% annualized volatility2. 

Also suppose we have the ability for near infinite leverage, we can trade at any time 

scale, transaction costs are zero, and leverage has no cost3. In the context of Kelly, 

how do we maximize the expected value of the logarithm of wealth? 

Kelly’s maximization of the expected value of logarithmic wealth is typically 

calculated by maximizing the expected geometric growth rate. Here we use a 

popular estimate of geometric average and apply a leverage factor L to returns. 

𝑊∗ = 𝑟 −
𝜎2

2
 

where r is the expected return and W* is our proxy for ln(wealth) 

Applying leverage L to the above leads to: 

𝑊𝐿∗  = 𝐿 𝑟 −
𝐿2𝜎2

2
 

___________________________________ 

Wealth curve after playing the 

coin toss game at varied bet size 

L. 

___________________________________ 

2 As we will see later in this 

paper, it is important that the 3rd 

and 4th moments follow a 

normal. 

___________________________________ 

3 These assumptions are for the 

sake of simplicity and are 

maintained throughout this 

paper. Leverage and rebalancing 

are certainly not without cost 

and are time varying in nature. 
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Differentiating WL* with respect to L, we solve for the maximum 𝑊𝐿∗. 

𝑑𝑊𝐿∗

𝑑𝐿
 = 𝑟 − 𝐿𝜎2 

Using the descriptive statistics of 10% return and 20% volatility, we see optimal 

leverage of r/σ2 = 10%/20%2 = 2.5x. 

Next, we use real world return data to confirm this property. We selected gold 

(proxied by the ETF: GLD) which between 2017 and 2021 had average annualized 

returns of 9.4% and volatility of 13.5%. If we knew these values for certain ex-ante, how 

much should we have been willing to risk? 

Solving for optimal leverage we calculate r/σ2 = 5.17; that is, we should borrow 4.17x 

our wealth and own 517% of our wealth in the asset, rebalancing back to that leverage 

amount as the price of the asset increases or decreases. 

In the graphs below, we simulate running L from 3.0 to 7.0 and calculating the ending 

wealth for each increment of leverage. 

Applying various rates of leverage to returns we do see that L=5.17 is approximately 

peak wealth. 

 

___________________________________ 

Wealth of long GLD at varying 

leverage of L. We continue to 

assume zero financing and 

rebalancing costs for the sake of 

simplicity. 
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Each of the paths in the graph above were generated using the same underlying return 

and volatility (or put another way, equal Sharpe ratios) but with varying amounts of 

leverage. We see that increasing leverage boosts ending wealth to a point, but not 

beyond. Trading above optimal leverage leads to more risk and lower wealth, just as 

Kelly suggested. 

Preference for positively skewed return distributions 

Part I of this paper noted the need for 3rd and 4th moments of the return distribution to 

be normal-like for the optimal leverage calculation to hold true. But what happens if 

returns have excess skewness or kurtosis? Because financial assets are prone to having 

excess tails, we need a more robust solution for determining optimal leverage that 

incorporates information about the return distribution beyond mean and volatility. 

This topic is explored here in Part II. 

We show that, for investments with identical reward to risk, investors can apply more 

leverage to positively skewed returns and generate larger ending wealth. Meanwhile, 

negatively skewed distributions require investors to use less leverage, thus limiting 

wealth. 

 

___________________________________ 

Wealth curves at four levels of 

leverage. 
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To illustrate this point, we create three return distributions, each with the same 

realized return and volatility. The first distribution has no skew, the second has 

negative skew, and the third has positive skew. To construct our return distributions, 

we employ the skew normal distribution4. We select three parameterizations. Each 

parameterization has the exact same mean and volatility (hence, equivalent Sharpe 

ratios), but differ in their skewness and kurtosis. 

 

 

Next, we pick a leverage factor L and solve for wealth across L in each of the three 

distributions after 1,000 returns with reinvestment. We assume that realized returns 

follow each distribution’s theoretical expectation perfectly. 

Parameters 1 2 3

ξ 0.0062 0.0844 -0.0720

ω 0.0623 0.1000 0.1000

α 0 -5 5

Statistics 1 2 3

Mean 0.62% 0.62% 0.62%

Volatility 6.23% 6.23% 6.23%

Skewness 0.00 -0.85 0.85

Kurtosis 0.00 0.70 0.70

Distribution

Distribution

___________________________________ 

4 A very detailed paper on the 

construction of skew normal 

distributions as it relates to 

investment returns can be found 

at Logica Capital Advisers. 

___________________________________ 

Skew normal parameters and 

their corresponding descriptive 

statistics. 

___________________________________ 

Graphs of our three return 

distributions. 

https://hmfund.sharepoint.com/sites/outbound/Shared%20Documents/Forms/AllItems.aspx?id=%2Fsites%2Foutbound%2FShared%20Documents%2FThe%20Illusion%20of%20Skill%2Epdf&parent=%2Fsites%2Foutbound%2FShared%20Documents&p=true
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The graph above shows that despite the expected return and volatility being 

equivalent for all three distributions, the leverage L can be increased further before 

wealth peaks for the positively skewed return distribution. On the other hand, 

leverage for the negatively skewed return distribution peaks at lower L and lower 

wealth than either the zero or positive skewed distributions. 

Estimating optimal leverage by including 3rd and 4th moments 

In Part I, we presented an analytical solution to estimate optimal leverage using return 

and volatility estimates. 

We pursue a similar path here while incorporating the 3rd and 4th moments of the 

return distribution. We use a Taylor expansion of expected log returns, following 

Wilcox (2000). 

𝑊∗ = lnሺ1 + 𝑟ሻ −
𝜎2

2ሺ1 + 𝑟ሻ2
+ 𝑠𝑘𝑒𝑤 

𝜎3

3ሺ1 + 𝑟ሻ3
− 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 

𝜎4

4ሺ1 + 𝑟ሻ4
 

where r is the expected return and W* is our proxy for ln(wealth) 

Applying leverage L to the above, we have: 

𝑊𝐿∗  = 𝐿 lnሺ1 + 𝑟ሻ −
𝐿2𝜎2

2ሺ1 + 𝑟ሻ2
+ 𝑠𝑘𝑒𝑤 

𝐿3𝜎3

3ሺ1 + 𝑟ሻ3
− 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 

𝐿4𝜎4

4ሺ1 + 𝑟ሻ4
 

Differentiating WL* with respect to L leads to: 

___________________________________ 

Wealth versus leverage L with 

each of our three return 

distributions. 

https://jpm.pm-research.com/content/26/4/53
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𝑑𝑊𝐿∗

𝑑𝐿
 = lnሺ1 + 𝑟ሻ −

𝐿𝜎2

ሺ1 + 𝑟ሻ2
+ 𝑠𝑘𝑒𝑤 

𝐿2𝜎3

ሺ1 + 𝑟ሻ3
− 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 

𝐿3𝜎4

ሺ1 + 𝑟ሻ4
 

Using the descriptive statistics in the three skew normal distributions, we solve for L 

that maximizes our proxy for wealth. 

 

Each of these solved optimal L’s is very near peak wealth in each of the corresponding 

return distributions. 

We can use this method to estimate the amount of leverage which maximizes wealth 

when given expected returns, volatility, skewness, and kurtosis. 

Conclusion 

Part I of this paper described the role that volatility plays in shaping the distribution of 

an asset or strategy over time. We saw that increasing volatility shifts the peak of 

wealth distributions to the left and creates a more skewed right tail. We then linked 

volatility’s effect to Kelly’s definition of optimal leverage, showing that too much 

volatility relative to return moves wealth sub-optimally. 

Part II detailed the role that skewness and kurtosis have in determining how much 

leverage an investor can employ. Positively skewed return distributions allow more 

leverage, and thus higher wealth, than non-skewed or negatively skewed distributions. 

Any estimate of optimal leverage is far from perfect as the non-stationarity of games 

played in the financial markets reduces their effectiveness. It is difficult enough to 

predict forward looking returns and volatility of an asset or strategy. Predicting 

skewness and kurtosis with true precision is an even taller task. Even if our crystal ball 

were perfectly accurate, trading at leverage multiples that maximize wealth will lead to 

exceptionally large volatility that likely exceed bounds tolerated by investors and 

professional allocators. Nonetheless, this paper describes the influence that third and 

fourth moments of the return distribution have on wealth and proposes a measure to 

estimate optimal leverage for those bold enough to trade there.  

 

 

 

 

 

Distribution Solved Optimal L

1 1.62

2 1.49

3 1.80

___________________________________ 

Solved optimal L based on the 

1st through 4th moments of 

each distribution. 
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